A Guide to Electric Vehicle Monitoring

The vehicle-related specific data is a major driving force behind decisions such as investments in charging infrastructure, fleet diversification, and upskilling of drivers. That is how EV fleets are considered close to the “tipping point” of mass adoption. Electric vehicle monitoring enables reliability by detection, diagnosis, and prognosis. 

Stringent government policies towards emission reduction are going to change the way transportation looks today. City planners and managers leverage the power of transport data for an emission-free, clean environment. Electric vehicle(s) answer these complicated questions based on their ability to deliver real-time trustable data. A smart electric vehicle monitoring system gathers, reports, analyses, and translates this data for efficient fleet management in realising the broader agendas.

Electric Vehicle Monitoring Data

Electric vehicle fleet management solutions are commonly based on telematics with user-friendly hand-held devices. In real-time monitoring of the electric fleet, specific data is collected and processed for a tailor-made route best for each vehicle. At the core of monitoring fleet performance, GPS signal and data analytics enables it to make solid predictions aiming at improving efficiency. Effective monitoring provides insights about:

  • Vehicle data

Vehicle profiling is operated on the cloud and continuously undergoes learning and process improvement. EV data guides fleet managers about the actual range of the vehicles, energy consumption, and overall fleet performance.

  • EV Battery data

The battery usage data and charging status can be useful in determining battery health. Electric vehicle monitoring supports the evaluation of fleets’ and individual vehicles’ state of charge. The data is useful in steering away from the charge anxiety.

  • Route and schedule data

Electric fleet’s optimal route planning is a key dynamic in the total cost of EV ownership. Integrated approach with built-in google maps collects real-time for the best possible charging points on the vehicle’s route. The process ensures that the vehicle continues its operation with a safe charge limit and doesn’t cause range anxiety for drivers or fleet managers. Additionally, the entire electric fleet operates in sync with electric charge readings and asset optimal use. Such monitoring is proving beneficial particularly for electric buses.

  • Uncontrollable factor data

Monitoring of uncontrollable conditions like geography, road type, or climate provided insights regarding the state of charge which is helpful for accurate prediction of range during certain times of the year or a day.

  • Driver behavior data

Last but not the least, the driver behavior alteration towards more safe driving can be achieved based on the data on the go. The monitoring mechanism is quite effective in accident ratio and imposing corrective measures promptly.

Maximum resource utilisation and efficiency of electrical infrastructure with reduced costs are major aspirations in the EV adoption regime. A few opportunities that exist in the core of electric vehicle monitoring, are;

  • Avoiding costly upgrades in electrical infrastructure
  • Technology advancement and scalability
  • Use of IoT and smart technologies for mitigation of cost barriers
  • Achieving the utilisation efficiency of electric fleets

Unlock the power of effective monitoring by employing an efficient EV Monitoring system with Evenergi.

Supporting Documentation

  1.  https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-epa.2018.5732
  2. https://www.greenbiz.com/article/4-cities-using-transportation-data-be-more-sustainable-and-socially-inclusive
  3. https://blog.contus.com/iot-enabled-electric-vehicle-monitoring-solution/
  4. https://iopscience.iop.org/article/10.1088/1757-899X/252/1/012095/pdf
  5. https://ieeexplore.ieee.org/document/6915044
  6. https://www.dcs.warwick.ac.uk/~nathan/resources/Publications/aii-2016.pdf
  7. https://ieeexplore.ieee.org/document/8005044
  8. https://www.csagroup.org/wp-content/uploads/CSA-RR_ElectricVehicle_WebRes.pdf

Vehicle to Grid – An Overview

There are more than 80 V2G trials globally, with the majority of trials taking place in Europe where the world’s major automobile companies, distribution network service providers and electric car charger manufacturing companies are collaborating.

The V2G hub maps out V2G projects from around the world, which includes projects with physical deployment of V2G technology for a specific use case and excludes experimental research and narrow technology demonstration.

Companies can stay ahead of the game by taking part in V2G trials to test out the technology and evaluate the benefits for their fleet.

What is V2G?

Vehicle-to-grid (V2G) describes a system in which plug-in electric vehicles (EVs), such as battery electric vehicles (BEV) or plug-in hybrids (PHEV), communicate with the power grid to sell demand response services by either returning electricity to the grid or by throttling their charging rate.

V2G storage capabilities can enable EVs to store and discharge electricity generated from renewable energy sources such as solar and wind, with output that fluctuates depending on weather and time of day.

Benefits of V2G

V2G directs the charging and discharging of EV batteries based on users’ needs and the grid’s electricity supply, it allows the electricity grid to optimise the supply of local renewable energy and reduce infrastructure costs, while the EV owner can enjoy greener, more economical consumption of electricity and be financially rewarded for serving the electricity grid.

This means V2G comes with the following benefits for the EV owner and the distribution network:

  • Supporting electrical grid, reducing concerns for grid overload
  • Maximise the business case opportunity of your EVs
  • Cheap and fast energy storage
  • Making use of existing resources
  • Reduction of environmental impact

How V2G works

V2G directs the charging and discharging of electric-vehicle batteries in accordance with users’ needs and the grid’s supply of available electricity. When electricity supply exceeds demand (notably during peak periods of renewable energy production), charging occurs at the maximum level; however, during peak electricity demand, vehicles can then supply electricity into the grid.

The figure below shows four models of V2G and the potential electricity and revenue flows across its stakeholders.

Challenges of V2G

The only technical disadvantage of V2G operation is the battery degradation due to the high number of charge/discharge cycles. Most electric car manufacturers are not providing warranty for V2G operations except a few i.e. Nissan and Mitsubishi. This strategy is still in its early stages to be implemented on a large scale.

Applications for V2G

Apart from providing local services at individual levels, when aggregated, EVs can also provide services to the grid for:

  • Voltage regulation
  • Frequency regulation

Optimal utilisation of the energy resources (electric cars as battery reserves) will result in minimum cost of energy consumption for the end users as well as reduced impact on the electric power grid.

Apart from V2G, it is worthwhile to think about V2X, which can be vehicle-to-grid, vehicle-to-building, vehicle-to-vehicle, vehicle-to-home. The concept remains the same with different applications.

Evenergi consulting for V2G

Evenergi can provide services for modeling the energy management systems by optimal utilisation of available energy resources.

Evenergi can also help facilitate V2G trials with industry partners such as distributed network supply providers (DNSPs), electric car manufacturers, electric car charger manufacturers, and state governments.

Contact Evenergi here.